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Abstract 

Objective: To assess the quality of value sets in clinical quality measures, both individually and as a population of 
value sets. Materials and methods: The concepts from a given value set are expected to be rooted by one or few 
ancestor concepts and the value set is expected to contain all the descendants of its root concepts and only these 
descendants. (1) We assessed the completeness and correctness of individual value sets by comparison to the exten-
sion derived from their roots. (2) We assessed the non-redundancy of value sets for the entire population of value 
sets (within a given code system) using the Jaccard similarity measure.  Results: We demonstrated the utility of our 
approach on some cases of inconsistent value sets and produced a list of 58 potentially duplicate value sets from the 
current set of clinical quality measures for the 2014 Meaningful Use criteria. Conclusion: These metrics are easy to 
compute and provide compact indicators of the completeness, correctness, and non-redundancy of value sets. 

Introduction 

In recent years, there has been an effort to establish quality measures for health care providers, with the objective of 
improving the quality of health care and comparing performance across institutions. As part of the Meaningful Use 
incentive program and the certification criteria for electronic health record (EHR) products, the Office of the Na-
tional Coordinator for Health Information Technology and the Centers for Medicare & Medicaid Services have se-
lected a set of clinical quality measures. For example, one such measure assesses the percentage of pediatric diabetic 
patients who have been tested for hemoglobin A1c in the past year. The basic information for computing these 
measures is drawn from EHR data. The implementation of clinical quality measures, i.e., the binding of CQMs to 
EHR data is realized through sets of codes from standard vocabularies, called value sets, corresponding to specific 
data elements in the CQM. For example, all procedure codes for Intracranial Neurosurgery in ICD-10 or all diagno-
sis codes for Enophthalmos in SNOMED CT (see Figure 1, top). 

On October 25, 2012, the National Library of Medicine (NLM), in collaboration with ONC and CMS, launched the 
NLM Value Set Authority Center (VSAC). The VSAC, which is accessible over the web at https://vsac.nlm.nih.gov, 
provides downloadable access to all official versions of vocabulary Value Sets contained in the clinical quality 
measures (CQM) that are part of the 2014 meaningful use criteria. As of December 21, 2012, the VSAC contains 
1,520 unique value sets used in 93 clinical quality measures, representing 83,723 unique codes from standard vo-
cabularies including LOINC, RxNorm, SNOMED CT, ICD-9CM, ICD-10-CM, ICD-10-PCS and CPT. 

NLM is responsible for both the validation and the delivery of the value sets. All the codes used in the value sets 
from the clinical quality measures investigated were validated for referential integrity against current versions of the 
corresponding reference code systems. Types of errors encountered include obsolete codes, errors in codes, and 
code/description mismatch. Feedback was provided to the measure developers, including suggestions for fixing er-
rors.  The value sets were validated iteratively until all errors had been fixed. However, given the short timeframe, 
limited quality assurance has been performed, beyond ensuring referential integrity and currency of the codes 1. 

We define the following quality criteria for value sets in clinical quality measures. 

(1) Completeness: A value set should contain all the relevant codes for a particular data element. Moreover, 
the value set name should also denote this data element. From a terminological perspective, the code corre-
sponding to the data element in the code system should be present in the value set, along with all its de-
scendants. As a consequence, the VS is expected to be rooted by one concept and to contain all the de-
scendants of this root concept. 

(2) Correctness: A value set should contain only the relevant codes for a particular data element. From a ter-
minological perspective, the presence in the value set of codes other than the root concept and its descend-
ants might indicate incorrect codes, as they are outside the value domain. 

(3) Non-redundancy: A given data element should be represented by one and only one value set (for a given 
code system). Multiple value sets with the same codes should be harmonized, in order to facilitate mainte-
nance and prevent inconsistency over time. (Duplicate value sets may have been introduced in CQMs at a 
time when no single repository of value sets existed.)  
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The following example illustrates an “ideal” value set, for which the name of the VS corresponds to a concept from 
the underlying terminology, and for which the list of codes provided for the data element (also called the extension 
of the VS) exactly includes this concept and all its descendants in the code system. The name of the data element 
represents the intension of the value set, as would its definition. 

The objective of this study is to introduce metrics for assessing the completeness, correctness, and uniqueness of 
value sets based on the structure of the underlying terminologies through the UMLS. Focusing on disease value sets, 
we demonstrate how these metrics can help detect quality issues in value sets. 

 
Figure 1 Value set for the condition Enophthalmos in SNOMED CT. The value set is provided as a list of codes 
(top). The value set name, Enophthalmos, resolves to the SNOMED CT concept Enophthalmos (disorder). Using 
hierarchical relations in SNOMED CT, we extend this concept with all the descendants. The 5 concepts in the ex-
tended set exactly correspond to the 5 concepts in the original value set, but the relations among these concepts are 
revealed (bottom). In this case, Enophthalmos (disorder) is the parent term of which the other four terms are special-
izations. In other words, Enophthalmos (disorder) represents the intension of this value set, of which the list of 
codes is the extension. 

Background 

Quality measure value sets form the basis for guidelines and standards for measuring and reporting on perfor-
mance regarding preferred practices or measurement frameworks. Each value set is a domain specific list of con-
cepts (codes) derived from standard terminologies, including SNOMED CT®, LOINC®, and RxNorm, used to in-
stantiate data elements from clinical quality measures (e.g., patients with diabetes, clinical visit).  

NLM terminology services are used in this study for mapping value set names to terminology concepts. The Uni-
fied Medical Language System® (UMLS®) terminology services (UTS) provide exact and normalized match search 
functions, which identify medical concepts for a given search string. The normalization process is linguistically mo-
tivated and involves stripping genitive marks, transforming plural forms into singular, replacing punctuation (includ-
ing dashes) with spaces, removing stop words, lower-casing each word, breaking a string into its constituent words, 
and sorting the words in alphabetic order 2. In this study, we use the UTS Java API 2.0 for the normalized name 
mapping of value set names to terminology concepts. The terminology specific parent/child relations among codes 
in a value set were extracted from the UMLS and stored in local RDF version. 

Related work. Quality assurance of biomedical terminologies is an active domain of research. In the past few years, 
quality assurance (QA) of biomedical terminologies and ontologies has become a key issue in the development of 
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standard terminologies, such as SNOMED CT, and has emerged as an active field of research. Approaches to quality 
assurance include the use of lexical, structural, semantic and statistical techniques applied to particular biomedical 
terminologies and ontologies, as well as techniques for comparing and contrasting biomedical terminologies and 
ontologies 3. 

In prior work, we have compared sets of concepts from the UMLS, corresponding to the intension and extension of 
high-level biomedical concepts 4. Other groups have also leveraged intersections of sets for quality assurance pur-
poses 5. 

In contrast, little work has been directed at assessing the quality of value sets beyond the validity of their codes. 
Jiang et al. evaluated value sets from cancer study common data elements with the focus on finding misplaced val-
ues in a value set by analyzing UMLS semantic group associations for all values in a value set 6. The same group 
provides an approach for context-driven VS extraction from terminologies such as SNOMED CT 7, but did not ap-
ply this approach on quality assessment of existing VS. 

The specific contribution of our work is not only to apply quality assurance methods to the value sets, but also to 
propose specific quality criteria for value sets and to develop operational definitions for the assessment of these 
quality criteria, in the form of easily computable metrics. 

Materials 

Our study investigates a subset of the 1,520 value sets for the clinical quality measures for the 2014 Meaningful Use 
criteria, downloaded from the VSAC as Excel files (12/21/2012 release). More specifically, we focus on the 1,054 
diagnosis related value sets from SNOMED CT (526), ICD-9-CM (285), and ICD-10-CM (243). As shown in Figure 
2, these three code systems cover 86% of all value sets and 74% of all code instances. Information extracted from 
these value sets includes the value set names, unique identifiers (OIDs), as well as the codes and descriptions (terms). 
The size of these VS ranges from one single code up to several thousand codes (median 10), such as the ICD-10-CM 
Trauma VS with 20,560 codes. SNOMED CT VS contain between 1 and 3,883 codes (median 11), whereas ICD-9-
CM VS tend to be smaller and range from 1 to 1,213 codes (median 6). 

 
Figure 2 The diagnosis related value sets SNOMED CT, ICD-10-CM, and ICD-9-CM account for 1,054 of 1,528 
value sets in total (86%). In terms of code instances, these value sets cover 90,937 of the total amount of 122,304 
code instances (74%). 

Methods 

Our investigation assesses the quality of the value sets from two different perspectives. On the one hand, we assess 
the quality of individual value sets (completeness and correctness). On the other hand we examine populations of 
value sets, with focus on non-redundancy and opportunities for harmonization. As we show later, the population 
view also provides insights on the quality of individual value sets. 

Quality assurance of individual value sets. 

As mentioned earlier, the information currently provided for a VS does not include a detailed, explicit expression of 
its intension, which is however a prerequisite for assessing a VS in terms of completeness and correctness. As a sub-
stitute, we will exploit the information that is available, namely the list of codes and the VS name, of which the lat-
ter can be seen as an indirect expression of the intension. Thus, our VS assessment is based on (1) reverse-
engineering the intension of a given VS from the VS name and its list of codes, (2) deriving its extension from the 
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reverse-engineered intension, and (3) comparing the actual VS codes with the codes of the derived extension. The 
overview of our strategy is depicted in Figure 3. 

(1) Reverse-engineering the VS intension 

We propose to reverse-engineer a VS’s intension from the VS name and from its code list.  

• VS name: We leverage the NormalizedString search function of the UTS API 2.0 to establish mappings 
from the VS names to concepts from a given code system (e.g., SNOMED CT), which is expected to reflect 
the intension of the VS. Of note, when mapping to concepts from a specific UMLS source vocabulary, the 
UTS takes advantage of all synonyms for this concept, including synonyms from other source vocabularies. 

• Code list: We identify as roots those concepts that are not descendants of any other concept inside the VS. 
For terminologies such as SNOMED CT, were any code can be used for clinical documentation, we look 
for root concepts within the VS itself. In contrast, coding rules for ICD dictate that only leaf nodes be used 
in value sets. In this case, we allow aggregation concepts outside a particular VS to be root nodes, if they 
subsume a maximum of nodes from the value set. However, in order to prevent high-level nodes to be se-
lected as roots for heterogeneous value sets, we set a threshold in the ICD terminology tree, above which 
aggregation nodes cannot be selected as roots. We mark these root nodes as external roots and distinguish 
them from the original nodes from the VS. 

 
Figure 3 Quality assurance of individual value sets. Overview of the methods. 

(2) Deriving the VS extension from the reverse-engineered intension 

We compute the full VS extension from the root concepts as identified in step (1) by taking into account the set of 
all descendants of the roots using the transitive closure of hierarchical relations. We consider the resulting list of 
codes as the expression of the value set’s intension.  
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• VS name: Starting from the concept to which the VS name mapped, we extract all the descendants of this 
concept in the corresponding code system. The extension consists of the concept mapped to and all its de-
scendants. 

• Code list: Starting from the root(s) identified from the original value set, we extract all the descendants of 
these concepts in the corresponding code system. For SNOMED CT, the extension consists of the root con-
cept(s) and all their descendants. For ICD, since only leaf nodes are allowed in the value sets, the extension 
consists of all the leaf nodes found among the descendants of the root concept(s). 

 
Figure 4 Quality assurance of an individual value set based on the derived value set extension. The graph on the 
right represents the derived extension VSRE for a given VSori. All blue circles represent the six codes from VSori. The 
two solid white circles represent the codes that were added through the expansion of the root nodes (blue circles 
marked with r). Completeness: In this case, the completeness, which is the ratio between the common nodes in the 
intersection (blue) and the complete expansion in VSRE (white), is 5 divided by 7 = 0.71. Correctness (VS code list): 
The ratio between the common nodes in the intersection (blue) and VSori is 5 divided by 6 = 0.83. The blue node in 
VSori is identified as a singleton and is thus not included in VSRE. The doted nodes and lines indicate the shortest 
path via the lowest common ancestor at the top between the root nodes. 

(3) Comparing the actual VS to the derived VS extension 

We define a series of metrics to assess the degree to which the value sets conform to the desirable principles of 
completeness, correctness and non-redundancy, based on the comparison between the original extension of the VS 
and the extension derived from reverse-engineering the intension from the name and the roots of the VS. 

a) Completeness. Assuming a value set should contain all the codes corresponding to its intension, we com-
pare the cardinality of the original VS extension (VSori) to that of the extension derived from the reverse-
engineered intension (VSRE). As a measure of completeness, we use the proportion of the codes from VSRE 
covered by VSori. 

b) Correctness. Assuming a value set should contain only the codes corresponding to its intension, we com-
pare the cardinality of the reverse-engineered VS extension (VSRE) to that of the original VS (VSori). As a 
measure of correctness, we use the proportion of the codes from VSori covered by VSRE. This metric works 
well when using the extension derived from the name of the VS. However, since the extension derived 
from the roots includes, by design, the entirety of the original VS, a different metric must be defined in this 
case. Since we assumed that good value sets should have only one or at least few roots, it also means that 
the codes in a VS should be partitioned into a similar number of large clusters (relatively to the size of the 
VS). In other words, small disconnected clusters may be indicative of incorrect codes. Intuitively, aggregat-
ing the largest clusters together will result in isolating the smaller clusters. If we assume (liberally) that no 
value set should have more than 10 roots, the corollary is that clusters with less than 10% of the size of the 
VS are potentially suspicious. The proportion of codes in clusters containing less than 10% of the size of 
the VS thus provides another metric of correctness. Of note, the presence of a large number of roots and the 
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presence of singleton clusters in the reverse-engineered VS are also indicators of potential quality problems 
in the VS. 

Quality assurance of a population of value sets. 

In addition to comparing several aspects of a given VS (e.g., intension and extension), it is also possible to compare 
the value sets to one another in a population of VSs. Under our principle of non-redundancy, there should not be 
more than one value set for the same intension, and there should not be two VS with exactly the same extensions. 

Non-redundancy can be assessed by computing the pairwise similarity of all VS (within a given code system) in 
order to identify completely similar (duplicate) or partially similar (redundant) VS. We use the Jaccard index J to 
measure the similarity between VSi and VSj based on the codes they contain as follows:  

J(VSi, VSj) = | VSi ∩ VSj | / | VSi ∪ VSj |. 

In practice, pairs of VS with J(VSi, VSj) = 1 are duplicate value sets, as they contain exactly the same codes. Pairs of 
highly-similar VSs may exhibit redundancy or inconsistency, i.e., redundancy with errors (incorrect or missing 
codes). 

Due to the large number of comparisons and pairwise similarity values generated, we use hierarchical clustering to 
analyze the results, using a threshold for the minimum distance between VS to identify redundancy. 

Implementation 

Our methods for quality assurance of individual value sets are based on semantic information from the underlying 
terminologies. For each of the three code systems relevant to diagnosis (SNOMED CT, ICD-9-CM, ICD-10-CM) 
we generate separate graphs. These graphs are based on terminology specific parent/child relations, which are de-
rived from a RDF representation of the UMLS version 2012AB via SPARQL queries. For performance reasons, we 
load the graphs into a JAVA data structure and pre-calculate the transitive closure for all concepts in the graphs.  

The methods developed for the analysis of the value sets were implemented in JAVA 7. The mapping of value set 
names to UMLS concepts were performed using the UMLS Terminology Service API 2.0 version 2012AB. We cal-
culated the transitive closure of hierarchical relations for the concepts within a given code system using a RDF ver-
sion of the UMLS 2012AB in a Virtuoso triple store. Pairwise similarity of value sets and the dendrogram and heat 
map were calculated in R using the vegan package. 

Results 

Quality assurance of individual value sets. 

(1) Reverse-engineering the VS intension 

• VS name: The mapping from VS names to terminology concepts (exact or normalized match to one con-
cept) succeeded for 38% of all value sets. For 214 of the 526 (41%) SNOMED CT VS we were able to map 
the VS name to a SNOMED CT concept. For ICD-9-CM and ICD-10-CM we mapped 108 out of 285 
(38%), and 83 out of 243 (34%), respectively. 

• Code list: Extensions derived from the code lists were computed for all the VS from any of the 3 code sys-
tems. The number of roots per VS vary from 1 to 107 with a median of 1 and an average of 6.0 for 
SNOMED CT, from 1 to 167 (median 2, average 6.7) for ICD-10-CM, and from 1 to 114 (median 1, aver-
age 4.7) for ICD-9-CM. 

 (2) Deriving the VS extension from the reverse-engineered intension 

The distribution of the size of the derived extensions (from names or code lists) for each of the three code systems is 
shown in Table 1. 

Table 1 Distribution of the size of the derived extensions from names or code lists. 

 VS name Code list 
 # VS Min Max Med # VS Min Max Med 
SNOMED CT 214 1 9232 9.5 526 1 11793 20 
ICD-9-CM 108 1 1105 6 285 1 3629 9 
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ICD-10-CM 83 1 234 8 243 1 22894 16 

(3) Comparing the actual VS to the derived VS extension 

a) Completeness. Overall, of the 1,054 VS, 601 (57%) are complete (i.e., have a completeness measure of 1) 
and another 125 (12%) are nearly complete (completeness measure > 0.8). The distribution of completeness 
measures for all VS from the three code systems and for each type of reverse engineering (from name and 
from code list) is shown in Figure 5, top. 

b) Correctness. Overall, of the 1,054 VS, 927 (88%) are correct (i.e., have a correctness measure of 1) and 
another 48 (5%) are nearly correct (correctness measure > 0.8). The distribution of correctness measures for 
all VS from the three code systems and for each type of reverse engineering (from name and from code list) 
is shown in Figure 5, bottom. 

 

 
Figure 5 Completeness and correctness for SNOMED CT, ICD-9-CM, and ICD-10-CM value sets. 

Quality assurance of a population of value sets. 

The dendrogram shown in Figure 6 is a visualization artifact for the pairwise similarity matrix computed among the 
VS (within a given code system). The left part of the figure provides an overview of the similarity among the VS. 
Short branches (as in the bottom left corner) reflect areas of high similarity. In the detailed view, the colors of the 
heatmap reflect different degrees of similarity. Red (or dark) regions correspond to highly similar VS (e.g., Medical 
reason contraindicated and Medical or Other reason not done). The distribution of the pairwise similarity of the VS 
is shown in the bottom left portion of the figure. Of note, there are 32 pairs of identical VS from SNOMED CT. 



draft
  

 
Figure 6 Pairwise similarity of SNOMED CT value sets. Left: The heat map shows an overall low among value sets. 
Right, top: The detailed view reveals local clusters of high similarity for the part marked with a red square in the 
heat map on the left. Right, bottom: Number of VS pairs with a high similarity for SNOMED CT and ICD value 
sets. 

Discussion 

Significance of findings. Our approach was effective in identifying a number of potential errors and inconsistencies 
in value sets. For example, 58 duplicate value sets were identified, as well as 25 highly-similar value sets. However, 
the metrics we defined for completeness, correctness and non-redundancy are only indicators provided to help direct 
the attention of value set developers to areas of the value sets where errors are more likely (e.g., small disconnected 
clusters of codes within a value set).  

Our approach has proved effective on a variety of value sets of different sizes and from code systems with different 
degrees of granularity (i.e., SNOMED CT and ICDs). They have required little adaptation between code systems. 
Unlike manual curation, they can easily be reapplied to new versions of the value sets, at no significant cost. 

The principles behind the quality criteria (e.g., unique root) have been verified in a large number of cases, where 
value sets exhibit perfect completeness and correctness. However, these principles may be too strict in some cases 
and exceptions might apply to some value sets. 

Limitations and future work. The metrics that we labeled “completeness” and “correctness” in reference to gen-
eral quality criteria may simply reflect deviation from these criteria, but not necessarily errors. For example, the 
SNOMED CT value set for Acute tonsillitis was rooted by the UMLS name mapping approach to SNOMED CT 
concept Acute tonsillitis (17741008).The completeness for this value set is 1.0 because it indeed contains all de-
scendants of CT concept Acute tonsillitis. However, correctness was computed to be 0.92 because the set contains in 
addition the concept Acute lingual tonsillitis, which is not a child but a sibling of Acute tonsillitis. Both concepts are 
descendants of the term Acute pharyngitis, which might be eligible as an alternative VS name. In this case, the per-
ception of an error arises from the lack of a relation in SNOMED CT between Acute lingual tonsillitis and Acute 
tonsillitis, but the VS actually seems conform to its intension. 

Unlike reverse-engineering of the intension of the VS from the code list, reverse-engineering from the name in not 
always successful, because the name of the VS is not always amenable to mapping to a concept name. Overall, re-
verse-engineering from the name has only been successful for only 38% of all value sets. 
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Future work. Additional indicators of potential issues in the value sets could be explored further, e.g., the presence 
of a large number of roots and the presence of roots without expansion. We also would like to compare value sets 
across code systems (e.g., within a grouping), leveraging equivalence and mapping relations across terminologies. 
Finally, we plan to generalize this approach to value sets from other code systems, e.g., drug value sets. 

 
Conclusions 

We developed operational definitions for the quality assurance of value sets in the form of metrics for completeness, 
correctness and non-redundancy of value sets, considering the perspective of both individual value sets and value set 
populations. These metrics are easy to compute and can help direct the attention of value set developers to areas of 
the value sets where errors are more likely. We recommend that such metrics be integrated into value set authoring 
systems, such as the NLM Value Set Authority Center. 
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